精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是   
【答案】分析:由正方体ABCD-A1B1C1D1内有一个球与正方体的各个面都相切,知经过DD1和BB1作一个截面,得到的截面是一个长方形,里面包含一个圆,且这个圆的直径与长方形的宽相等,圆心是长方形的对角线的交点.
解答:解:∵正方体ABCD-A1B1C1D1内有一个球与正方体的各个面都相切,
经过DD1和BB1作一个截面,
∴得到的截面是一个长方形,里面包含一个圆,
且这个圆的直径与长方形的宽相等,圆心是长方形的对角线的交点,
∴正确的截面图是(2).
故答案为:(2).
点评:本题考查棱柱的结构特征及其应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案