13£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬Ëĸö¶¥µã¹¹³ÉµÄÁâÐεÄÃæ»ýÊÇ4£¬Ô²M£º£¨x+1£©2+y2=r2£¨0£¼r£¼1£©£®¹ýÍÖÔ²CµÄÉ϶¥µãA×÷Ô²MµÄÁ½ÌõÇÐÏß·Ö±ðÓëÍÖÔ²CÏཻÓÚB£¬DÁ½µã£¨²»Í¬ÓÚµãA£©£¬Ö±ÏßAB£¬ADµÄбÂÊ·Ö±ðΪk1£¬k2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µ±r±ä»¯Ê±£¬¢ÙÇók1•k2µÄÖµ£»¢ÚÊÔÎÊÖ±ÏßBDÊÇ·ñ¹ýij¸ö¶¨µã£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨µã£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÒÑÖªÌõ¼þÇó³öa£¬b¼´¿ÉÇó½âÍÖÔ²CµÄ·½³Ì£®
£¨2£©AB£ºy=k1x+1£¬ÔòÓÐ$\frac{{|{{k_1}-1}|}}{{\sqrt{1+k_1^2}}}=r$£¬»¯¼òµÃ$£¨{1-{r^2}}£©k_1^2-2{k_1}+1-{r^2}=0$£¬Ö±ÏßAD£ºy=k2x+1£¬Í¬ÀíÓÐ$£¨{1-{r^2}}£©k_2^2-2{k_2}+1-{r^2}=0$£¬ÍƳök1£¬k2ÊÇ·½³Ì£¨1-r2£©k2-2k+1-r2=0µÄÁ½Êµ¸ù£¬¹Êk1•k2=1£®¿¼Âǵ½r¡ú1ʱ£¬DÊÇÍÖÔ²µÄ϶¥µã£¬BÇ÷½üÓÚÍÖÔ²µÄÉ϶¥µã£¬¹ÊBDÈô¹ý¶¨µã£¬Ôò²ÂÏ붨µãÔÚyÖáÉÏ£®ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬Çó³öÏà¹ØµãµÄ×ø±ê£¬Çó³öÖ±ÏßBDµÄ·½³Ì£¬ÍƳöÖ±ÏßBD¹ý¶¨µã£®

½â´ð ½â£º£¨1£©ÓÉÌâÉèÖª£¬$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$£¬$\frac{1}{2}¡Á2a¡Á2b=4$£¬ÓÖa2-b2=c2£¬
½âµÃa=2£¬b=1£®
¹ÊËùÇóÍÖÔ²CµÄ·½³ÌÊÇ$\frac{x^2}{4}+{y^2}=1$£®
£¨2£©AB£ºy=k1x+1£¬ÔòÓÐ$\frac{{|{{k_1}-1}|}}{{\sqrt{1+k_1^2}}}=r$£¬»¯¼òµÃ$£¨{1-{r^2}}£©k_1^2-2{k_1}+1-{r^2}=0$£¬
¶ÔÓÚÖ±ÏßAD£ºy=k2x+1£¬Í¬ÀíÓÐ$£¨{1-{r^2}}£©k_2^2-2{k_2}+1-{r^2}=0$£¬
ÓÚÊÇk1£¬k2ÊÇ·½³Ì£¨1-r2£©k2-2k+1-r2=0µÄÁ½Êµ¸ù£¬¹Êk1•k2=1£®
¿¼Âǵ½r¡ú1ʱ£¬DÊÇÍÖÔ²µÄ϶¥µã£¬BÇ÷½üÓÚÍÖÔ²µÄÉ϶¥µã£¬¹ÊBDÈô¹ý¶¨µã£¬Ôò²ÂÏ붨µãÔÚyÖáÉÏ£®
ÓÉ$\left\{{\begin{array}{l}{y={k_1}x+1}\\{\frac{x^2}{4}+{y^2}=1}\end{array}}\right.$£¬µÃ$£¨{4k_1^2+1}£©{x^2}+8{k_1}x=0$£¬ÓÚÊÇÓÐ$B£¨{\frac{{-8{k_1}}}{4k_1^2+1}£¬\frac{-4k_1^2+1}{4k_1^2+1}}£©£¬D£¨{\frac{{-8{k_2}}}{4k_2^2+1}£¬\frac{-4k_2^2+1}{4k_2^2+1}}£©$£®
Ö±ÏßBDµÄбÂÊΪ${k_{BD}}=\frac{{{k_1}+{k_2}}}{-3}$£¬
Ö±ÏßBDµÄ·½³ÌΪ$y-\frac{-4k_1^2+1}{4k_1^2+1}=\frac{{{k_1}+{k_2}}}{-3}£¨{x-\frac{{-8{k_1}}}{4k_1^2+1}}£©$£¬
Áîx=0£¬µÃ$y=\frac{-4k_1^2+1}{4k_1^2+1}+\frac{{{k_1}+{k_2}}}{-3}•\frac{{8{k_1}}}{4k_1^2+1}=\frac{20k_1^2+5}{{-3£¨{4k_1^2+1}£©}}=-\frac{5}{3}$£¬
¹ÊÖ±ÏßBD¹ý¶¨µã$£¨{0£¬-\frac{5}{3}}£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Ö±Ïߺã¹ý¶¨µãÎÊÌ⣬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãa4=9£¬a3+a7=22£®
£¨1£©ÇóanºÍSn£»
£¨2£©Éè${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®2¦Ð+$\frac{\sqrt{3}}{3}$B£®¦Ð+$\frac{\sqrt{3}}{3}$C£®2¦Ð+$\frac{\sqrt{3}}{3}$D£®¦Ð+$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É輯ºÏM={x|x=2n£¬n¡ÊZ}£¬N={x|x=2n+1£¬n¡ÊZ}£¬P={x|x=4n£¬n¡ÊZ}£¬Ôò£¨¡¡¡¡£©
A£®M=PB£®P¡ÙMC£®N¡ÉP¡Ù∅D£®M¡ÉN¡Ù∅

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèFÊÇË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÓÒ½¹µã£¬ÈôµãF¹ØÓÚË«ÇúÏßµÄÒ»Ìõ½¥½üÏߵĶԳƵãPÇ¡ºÃÂäÔÚË«ÇúÏßµÄ×óÖ§ÉÏ£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Éèa£¬b¾ùΪʵÊý£¬Ôò¡°a£¾|b|¡±ÊÇ¡°a3£¾b3¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµã$P£¨\sqrt{3}£¬1£©$£¬Q£¨cosx£¬sinx£©£¬OÎª×ø±êÔ­µã£¬º¯Êý$f£¨x£©=\overrightarrow{OP}•\overrightarrow{QP}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСֵ¼°´ËʱxµÄÖµ£»
£¨2£©ÈôAΪ¡÷ABCµÄÄڽǣ¬f£¨A£©=4£¬BC=3£¬Çó¡÷ABCµÄÖܳ¤µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{2x-y-4¡Ý0£¬}&{\;}\\{x-2y-2¡Ü0£¬}&{\;}\\{y¡Ü6£¬}&{\;}\end{array}\right.$Ôòz=3x+yµÄ×î´óֵΪ48£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª{an}ΪµÈ²îÊýÁУ¬SnΪÆäǰnÏîºÍ£®ÈôS3=12£¬a2+a4=4£¬ÔòS6=6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸