精英家教网 > 高中数学 > 题目详情
(2012•杭州二模)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC的面积为
15
3
4
,b+c=8,A=120°,则a=(  )
分析:在△ABC中,由面积S=
15
3
4
=
1
2
bcsinA
,求得bc=15,利用已知条件,结合余弦定理求出a的值.
解答:解:在△ABC中,由面积S=
15
3
4
=
1
2
bcsinA
=
1
2
b×c×
3
2
,求得bc=15.又
b+c=8,所以 b2+c2+2bc=64.所以b2+c2=34.
再由余弦定理可得 a=
b2+c2-2bc•cosA
=
34 - 30•(-
1
2
)
=
49
=7,
故选A.
点评:本题主要考查三角形面积公式的应用,正弦定理、余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杭州二模)如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′-ABCM.
(Ⅰ)求证:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直线D'F与平面ABCM所成角的大小为
π
3
,求直线AD′与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则a=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正视图和侧视图如图所示.设△ABC,△A′B′C′的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则S的最大值为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},则集合P可以是(  )

查看答案和解析>>

同步练习册答案