精英家教网 > 高中数学 > 题目详情
方程y=
2-x2
-|2sin3x|
的零点个数是
4
4
分析:由方程(x-2)|x|-k=0得k=(x-2)|x|,然后利用分段函数,作出函数的图象,利用图象确定k的取值范围即可.
解答:解:由方程y=
2-x2
-|2sin3x|
=0,得
2-x2
=|2sin3x|

f(x)=
2-x2
,g(x)=|2sin3x|
,分别作出函数f(x),和g(x)的图象如图:
由图象可知两个图象的交点个数为4.
即方程y=
2-x2
-|2sin3x|
的零点个数是4.
故答案为:4.
点评:本题主要考查函数与方程的应用,利用数形结合是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与参数方程为
x=
t
y=2
1-t
(t为参数)
等价的普通方程为
x2+
y2
4
=1(0≤x≤1,0≤y≤2)
x2+
y2
4
=1(0≤x≤1,0≤y≤2)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1的方程为y=x2,抛物线C2的方程为y=2-x2,C1和C2交于A,B两点,D是曲线段AOB段上异于A,B的任意一点,直线AD交C2于点E,G为△BDE的重心,过G作C1的两条切线,切点分别为M,N,求线段MN的长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中
①设有一个回归方程y=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“?x0∈R,x02-x0-1>0“的否定¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(-l<X<0)=
1
2
-p;
④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系.
其中正确的命题的个数有(  )
附:本题可以参考独立性检验临界值表
 P(K2≥k)  0.5 0.40  0.25  0.15  0.10  0.05  0.025  0.010  0.005  0.001 
 k 0.455  0.708  1.323  2.072  2.706  3.841  5.024  6.535  7.879  10.
828 
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案