精英家教网 > 高中数学 > 题目详情
12.若a∈[1,6],则函数y=x+$\frac{a}{x}$在区间[2,+∞)内单调递增的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 求出函数y=x+$\frac{a}{x}$在区间[2,+∞)内单调递增时,a的范围,以长度为测度,即可求出概率.

解答 解:∵函数y=x+$\frac{a}{x}$在区间[2,+∞)内单调递增,
∴$\sqrt{a}$≤2,
∵a∈[1,6],
∴a∈[1,4],
∴函数y=x+$\frac{a}{x}$在区间[2,+∞)内单调递增的概率是$\frac{4-1}{6-1}$=$\frac{3}{5}$,
故选C.

点评 本题考查函数的单调性,考查概率的计算,正确运用函数的单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的一个零点为$\frac{π}{3}$,其图象距离该零点最近的一条对称轴为x=$\frac{π}{12}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若关于x的方程f(x)+log2k=0在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上恒有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若点P到直线y=3的距离比到点F(0,-2)的距离大1,则点P的轨迹方程为(  )
A.y2=8xB.y2=-8xC.x2=8yD.x2=-8y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1≥0\\ y≥0\end{array}\right.$,则z=2x+y的最大值是(  )
A.6B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点,$\overrightarrow{PM}=λ\overrightarrow{PC}(0<λ<1)$,试确定λ的值,使二面角P-FM-B的余弦值为$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-3,5),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则$\overrightarrow{c}$的坐标可以是(  )
A.(-2,3)B.(-2,-3)C.(4,-4)D.(4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c=$\sqrt{3}$bsinC-ccosB.
(Ⅰ)求B的大小;
(Ⅱ)若b=2$\sqrt{3}$,求△ABC的周长和面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{xn}满足xn+1=xn-$\frac{f({x}_{n})}{f′({x}_{n})}$,设an=ln$\frac{{x}_{n}-2}{{x}_{n}-1}$,若a1=$\frac{1}{2}$,xn>2,则数列{an}的通项公式an=2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果集合A={x∈Z|-2≤x<1},B={-1,0,1},那么A∩B=(  )
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{-1,0}

查看答案和解析>>

同步练习册答案