精英家教网 > 高中数学 > 题目详情
在区间[1,2]上为单调函数,则a的取值范围是   
【答案】分析:首先求出函数f(x)的导函数,由函数f(x)在区间[1,2]上为单调函数,则其导函数在(1,2)恒大于等于0或恒小于等于0,引入辅助函数g(x)=ax2-3x-a后,结合函数在区间端点值的关系列式求解a的范围.
解答:解:由,得:
令g(x)=ax2-3x-a,
因为在区间[1,2]上为单调函数,
则f(x)在(1,2)上恒大于等于0或恒小于等于0,
即g(x)=ax2-3x-a在(1,2)上恒大于等于0或恒小于等于0,
也就是g(1)•g(2)≥0恒成立,
即(a-3-a)(4a-6-a)≥0,解得a≤2.
故答案为a≤2.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,函数在某区间上单调,说明其导函数在该区间内恒大于等于(或恒小于等于)0,能根据g(x)=ax2-3x-a在(1,2)上恒大于等于0或恒小于等于0得出g(1)•g(2)≥0是解决该题的关键,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax(a∈R),g(x)=lnx.
(Ⅰ)当a=1时,求f(x)在区间[-2,2]上的最小值;
(Ⅱ)若在区间[1,2]上f(x)的图象恒在g(x)图象的上方,求a的取值范围;
(Ⅲ)设h(x)=|f(x)|,x∈[-1,1],求h(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax(a∈R),函数g(x)=lnx.
(1)当a=1时,求函数f(x)在区间[-2,2]上的最小值;
(2)若在区间[1,2]上f(x)的图象恒在g(x)的图象的上方(没有公共点),求实数a的取值范围;
(3)当a>0时,设h(x)=|f(x)|,x∈[-1,1].求h(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌一模)在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若在区间[1,2]上f′(x)>0,则f(x)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax(a∈R),g(x)=lnx.
(1)当a=1时,求y=g(x)-f(x)在x=1处的切线方程;
(2)若在区间[1,2]上f(x)的图象恒在g(x)图象的上方,求a的取值范围;
(3)设h(x)=|f(x)|,x∈[-1,1],求h(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1.
(1)求a、b的值;
(2)求出函数f(x)的单调区间.
(3)若在区间[-1,2]上,f(x)<a 恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案