精英家教网 > 高中数学 > 题目详情
设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.则椭圆C的离心率为   
【答案】分析:依题意可求得直线AQ的方程,从而求得Q点的坐标,利用向量的坐标运算由2+=可求得a,c之间的关系式,从而可求得椭圆C的离心率.
解答:解:∵A(0,b),F1(-c,0),F2(c,0),
∴直线AF2的斜率为:k=-
∵AQ⊥AF2
∴kAQ=
∴直线AQ的方程为:y-b=(x-0)=x,
令y=0得:x=-
∴Q点的坐标为(-,0).
∵2+=
∴2(2c,0)+(--c,0)=(0,0),
∴-=-3c,
∴3c2=b2=a2-c2
=
∴e==
故答案为:
点评:本题考查椭圆的简单性质,考查向量的坐标运算,求得Q点的坐标是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆C:数学公式+数学公式=1(a>b>0)的左焦点为F1=(-数学公式,0),椭圆过点P(-数学公式数学公式
(1)求椭圆C的方程;
(2)已知点D(l,0),直线l:y=kx+m与椭圆C交于A、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C:数学公式=1(a>b>0)的左、右焦点分别为F1、F2,离心率为数学公式,左焦点F1到直线l:数学公式的距离等于长半轴长.
(I)求椭圆C的方程;
(II)过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,线段MN的中垂线与x轴相交于点P(m,O),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年贵州省贵阳市高考数学二模试卷(理科)(解析版) 题型:解答题

设椭圆C:+=1(a>b>0)过点M(1,1),离心率e=,O为坐标原点.
(I)求椭圆C的方程.
(Ⅱ)若直线l是圆O:x2+y2=1的任意一条切线,且直线l与椭圆C相交于A,B两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁市泗阳中学、盱眙中学高三联考数学试卷(解析版) 题型:解答题

设椭圆C:+=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且=
(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:2012年四川省高考数学压轴卷(文科)(解析版) 题型:解答题

设椭圆C:+=1(a>b>0)的左焦点为F1=(-,0),椭圆过点P(-
(1)求椭圆C的方程;
(2)已知点D(l,0),直线l:y=kx+m与椭圆C交于A、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.

查看答案和解析>>

同步练习册答案