精英家教网 > 高中数学 > 题目详情

已知,,函数.

(1)求的单调递增区间;

(2)若,求cosx的值.

解:(1)

       由 

       所以的单调递增区间为   

   (2)由=得:  

       ∴

       ∴

       =

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三个函数y=sinx+1,y=
x2-2x+2+t
,y=
1
2
(x+
1-t
x
)(x>0)
,它们各自的最小值恰好是函数
f(x)=x3+ax2+bx+c的三个零点(其中t是常数,且0<t<1)
(1)求证:a2=2b+2
(2)设f(x)=x3+ax2+bx+c的两个极值点分别为(x1,m),(x2,n),若|x1-x2|=
6
3
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个函数y=|x|+1,y=
x2-2x+1+t
,y=
1
2
(x+
t
x
)(x>0),其中第二个函数和第三个函数中的t为同一常数,且0<t<1,它们各自的最小值恰好是方程x3+ax2+bx+c=0的三个根.
(1)求证:(a-1)2=4(b+1);
(2)设x1,x2是函数f(x)=x3+ax2+bx+c的两个极值点,求|x1-x2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数学公式是奇函数.
(1)求a的值;   (2)判断函数f(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数

(1)若a>b>c, 且f(1)=0,证明fx)的图象与x轴有2个交点;

(2)在(1)的条件下,是否存在m∈R,使池fm)= a成立时,fm+3)为正数,若存在,证明你的结论,若不存在,说明理由;

(3)若 对,方程有2个不等实根,

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省杭州外国语学校高二期中考试文科数学 题型:解答题

设函数,已知是奇函数。

(1)求的值。    

(2)求函数的单调区间与极值。

 

查看答案和解析>>

同步练习册答案