精英家教网 > 高中数学 > 题目详情

求证:对于任意实数x1、x2、y1、y2,都有不等式成立.

答案:
解析:


提示:

从要证明的不等式形式,联想到两点间的距离公式,故建立坐标系,采纳解析法证明.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且bn=
lnnx
a
2
n
,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2;
(3)正数数列{cn}中,an+1=(cnn+1(n∈N*),求数列{cn}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x 都有f (x)-x≥0,并且当x∈(0,2)时,有f (x)≤(
x+1
2
)2

(1)求f (1)的值;
(2)证明:ac≥
1
16

(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤-
1
2
或m≥
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+
1
2
bx2
+cx+d(a,b,c,d为常数且a≠0),g(x)=f′(x)(f′(x)为f(x)的导数).
(Ⅰ)若g(x)满足:①g′(0)>0;②对于任意实数x,都有g(x)≥0.求
g(1)
g(0)
的最小值;
(Ⅱ)若a=1且对任意实数x∈(-∞,0)时有f′(x)>0;对于任意实数x∈(0,4)有f′(x)<0,求b的实数范围;
(Ⅲ)若a>0,-4a<b<4a,b2-4ac>0,-(4a+c)<2b<4a+c,求证:函数g(x)的零点在区间(-2,2)内.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)满足:对于任意实数x,都有f(1+x)=f(1-x),且当0≤x≤1时,f(x)=3x+1+2x.
(1)求证:对于任意实数x,都有f(x+2)=f(x);
(2)当x∈[1,3]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=f(x)为定义在区间I上的函数,若对I上任意两个实数x1,x2都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]
成立,则f(x)称为I上的凹函数.
(1)判断f(x)=
3
x
(x>0)
是否为凹函数?
(2)已知函数f2(x)=x|ax-3|(a≠0)为区间[3,6]上的凹函数,请直接写出实数a的取值范围(不要求写出解题过程);
(3)设定义在R上的函数f3(x)满足对于任意实数x,y都有f3(x+y)=f3(x)•f3(y).求证:f3(x)为R上的凹函数.

查看答案和解析>>

同步练习册答案