精英家教网 > 高中数学 > 题目详情

如图,已知PA⊥平面ABC,且PA=,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.

(1)求证:PC⊥平面ADE;

(2)求直线AB与平面ADE所成角的大小.

答案:
解析:

  解:(1)证明:因为

  所以,又,且

  所以,从而.3分

  又,所以,得

  又,所以.6分

  (2)在平面PBC上,过点B作BF平行于PC交ED延长线于点F,连结AF,

  因为

  所以为直线AB和平面ADE所成的角.9分

  在三角形PBC中,PD=,则BD=,得BF=

  在中,

  所以直线AB与平面ADE所成的角为;12分

  另解:过点B作BZ∥AP,则BZ平面ABC,如图所示,分别以BA,BC,BZ所在直线为x轴,y轴,z轴建立空间直角坐标系.则A(1,0,0),C(0,1,0),P(1,0,),因为,设向量所成的角为

  则

  则直线AB与平面ADE所成的角为.12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丹东模拟)如图,已知PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=
3
,F是PB中点,点E在BC边上.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)求证:AF⊥PE;
(Ⅲ)若EF∥平面PAC,试确定E点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求点D到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求直线AB与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分别是BC,AP的中点.
(1)求异面直线AC与ED所成的角的大小;
(2)求△PDE绕直线PA旋转一周所构成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.
(1)求PD与平面PAC所成的角的大小;
(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.

查看答案和解析>>

同步练习册答案