精英家教网 > 高中数学 > 题目详情

如图,已知正方体ABCD-A1B1C1D1

求证:(1)平面AB1D1∥平面C1BD;

(2)对角线A1C被平面AB1D1和平面C1BD三等分.

答案:
解析:

  证:(1)连AC,∵BD⊥AC,AC是A1C在底面上的射影,由三条垂线定理得A1C⊥BD,同理可证A1C⊥BC1

  ∴A1C⊥平面C1BD,同理也能证得A1C⊥平面AB1D1

  ∴平面AB1D1∥平面C1BD.

  (2)设A1到平面AB1D1的距离为h,正方体的棱长为a,则有:(a)2a2

  ∴h=a.同理C到平面C1BD的距离也为a,而A1C=a.故A1C被两平行平面三等分.

  评析:论证A1C被两平行平面三等分,关键是求A1到平面AB1D1的距离,C到平面C1BD的距离,这里用三棱锥体积的代换,若不用体积代换,则可以在平面A1ACC1中去考虑:

  连A1C1,设A1C1∩B1D1=O1,AC∩BD=0,如图连AO1,C1O,AC1,设AC1∩A1C=K.A1C∩AO1=M,C1O∩A1C=N.可证M为ΔA1AC1的重心,N为ΔACC1的重心,则可推知MN=NC=A1M.

  另外值得说明的是:A1C是面AB1D1和面BC1D的公垂线.

  异面直线AD1和C1D的距离也等于MN.


提示:

本题若根据“一个平面内两条相交的直线分别与另一平面内两条相交的直线平行,则两平面平行”是很容易解决论证平面AB1D1∥平面C1BD的,但兼顾考虑(2)的论证,(1)我们还是采用“两平面垂直于同一直线则两平面平行”的判定的方法.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、如图,已知正方体ABCD-A1B1C1D1的棱长为3,点E,F在线段AB上,点M在线段B1C1上,点N在线段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中点,则四面体MNEF的体积(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是D1C、AB的中点.
(I)求证:EF∥平面ADD1A1
(Ⅱ)求二面角D-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1-PR-Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)如图,已知正方体ABCD-A1B1C1D1 的棱长为2,E,F分别是BB1,CD的中点.
(1)求三棱锥E-AA1F的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案