精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)求的值;

(Ⅱ)求在区间上的最大值和最小值.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

试题分析:(Ⅰ)可直接将角代入求值,也可先用正弦、余弦二倍角公式和化一公式将此函数化简为正弦型函数,再代入角求值。(Ⅱ)根据的范围先求整体角的范围,再根据三角函数图像求其值域。

试题解析:解:(Ⅰ)由

所以 8

(Ⅱ)因为

所以

函数在区间的最大值为

函数的最值为13

考点:用二倍角公式、化一公式化简三角函数,考查三角函数图像。

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届河北省石家庄市高二上学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)求的最小值;

(2)若对所有都有,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省高三10月月考文科数学试卷(解析版) 题型:解答题

(本小题满分10分)已知函数

   (1)试求的值域;

   (2)设,若对恒有 成立,试求实数的取值氛围。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三10月月考文科数学试卷 题型:解答题

 

已知函数,(1)求的定义域;

(2)设是第四象限的角,且,求的值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省高三第一次质量检测文科数学卷 题型:解答题

(12′)已知函数

(1)求的解析式;

(2)判断的奇偶性。

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二第一学期期末考试理科数学试卷 题型:解答题

已知函数.

(Ⅰ)当时,求的最小值;

(Ⅱ)若函数在区间上为单调函数,求实数的取值范围;

(Ⅲ)当时,不等式恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案