精英家教网 > 高中数学 > 题目详情

已知在椭圆上,,是椭圆的焦点,则(  )

A.6              B.3             C.        D. 2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网
如图,四边形OABC为矩形,点A、C的坐标分别为(a+1,0)(a>1)、(0,1),点D在OA上,坐标为(a,0),椭圆C分别以OD、OC为长、短半轴,CD是椭圆在矩形内部的椭圆弧.已知直线l:y=-x+m与椭圆弧相切,且与AD相交于点E.
(Ⅰ)当m=2时,求椭圆C的标准方程;
(Ⅱ)圆M在矩形内部,且与l和线段EA都相切,若直线l将矩形OABC分成面积相等的两部分,求圆M面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=
3
2
S△DEF2=1-
3
2
.若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浦东新区三模)已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)由抛物线弧y2=4mx(0≤x≤
2m
3
)
和椭圆弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲线叫“抛椭圆”,是否存在以原点O为直角顶点,另两个顶点A1、A2落在“抛椭圆”上的等腰直角三角形OA1A2,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

科目:高中数学 来源:2013届海南省高二上学期期末理科数学试题(解析版) 题型:解答题

(本题满分10分)已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.

 

查看答案和解析>>

同步练习册答案