精英家教网 > 高中数学 > 题目详情
(2013•朝阳区一模)在△ABC中,a,b,c分别为角A,B,C所对的边,且满足b=7asinB,则sinA=
1
7
1
7
,若B=60°,则sinC=
13
14
13
14
分析:根据正弦定理,得b=
asinB
sinA
,与已知等式比较可得sinA=
1
7
,而B=60°得sinB>sinA,所以角A是锐角,由同角三角函数的平方关系算出cosA=
4
3
7
,最后根据sinC=sin(A+B),结合两角和的正弦公式即可算出sinC的值.
解答:解:∵由正弦定理,得
b
sinB
=
a
sinA

∴b=
asinB
sinA
=7asinB,解之得sinA=
1
7

∵B=60°,sinA=
1
7
<sinB=
3
2
,得A为锐角
可得cosA=
1-sin2A
=
4
3
7
(舍负)
∴sinC=sin(A+B)=sin(A+60°)=
1
2
×
1
7
+
3
2
×
4
3
7
=
13
14

故答案为:
1
7
13
14
点评:本题给出三角形ABC中的边角关系式,求sinA和sinC的值,着重考查了运用正余弦定理解三角形和两角的正弦公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知函数f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,
π
2
]
时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)若直线y=x+m与圆x2+y2+4x+2=0有两个不同的公共点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).
(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;
(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;
(Ⅲ)在两次试验中,记卡片上的数字分别为ξ,η,试求随机变量X=ξ•η的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知函数f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2]上有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)设τ=(x1,x2,…,x10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)达到最大值的所有排列τ的个数.

查看答案和解析>>

同步练习册答案