精英家教网 > 高中数学 > 题目详情

已知函数f(x)的导函数的图象如图所示,若△ABC为锐角三角形,则一定成立的是


  1. A.
    f(sinA)>f(cosB)
  2. B.
    f(sinA)<f(cosB)
  3. C.
    f(sinA)>f(sinB)
  4. D.
    f(cosA)<f(cosB)
A
分析:根据导数的图象,得到函数f(x)在区间(0,+∞)上是增函数.再由正弦函数的单调性和锐角三角形的性质,得到sinA>cosB,所以f(sinA)>f(cosB),得到正确选项.
解答:根据导数的图象,可知
当x>0时,f'(x)>0;当x<0时,f'(x)<0
∴f(x)在区间(0,+∞)上是增函数,在区间(-∞,0)上是减函数
∵△ABC为锐角三角形,
∴A、B都是锐角,且A+B>
由此可得0<-B<A<
因为正弦函数在锐角范围是增函数,所以对上式的两边取正弦得sin(-B)<sinA
∴sinA>cosB,再结合f(x)在区间(0,+∞)上是增函数,得f(sinA)>f(cosB)
故选A
点评:本题以导数的符号判断函数的单调性,并在锐角三角形比较两个函数值的大小,着重考查了导数的性质和锐角三角形的性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知函数f(x)的导函数f′(x)=2x-5,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)的导数f″(x)满足0<f′(x)<1,常数a为方程f(x)=x的实数根.
(Ⅰ)若函数f(x)的定义域为M,对任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求证:方程f(x)=x存在唯一的实数根a;
(Ⅱ) 求证:当x>a时,总有f(x)<x成立;
(Ⅲ)对任意x1、x2,若满足|x1-a|<2,|x2-a|<2,求证:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则f(1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)的图象如图所示,那么(  )

查看答案和解析>>

同步练习册答案