精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=2,an+1=2an-n+1,n∈N*
(I)证明数列{an-n}是等比数列;
(II)设bn=
an2n
,求数列{bn}的前n项和
Sn
分析:(I)变形原条件可得an+1-(n+1)=2(an-n),易确定等比关系;(II)由(I)可得{an}的通项公式,进而可得{bn}的通项公式,由错位相减法易得答案.
解答:解:(I)由题设an+1=2an-n+1,可得an+1-(n+1)=2(an-n),
又a1-1=1,所以数列{an-n}首项为1,公比为2的等比数列;
(II)由(I)可知an-n=2n-1,于是数列{an}的通项公式为an=2n-1+n,
所以数列bn=
an
2n
=
1
2
+n(
1
2
)n

所以Sn=
n
2
+[1
1
2
+2
1
22
+3•
1
23
+…+(n-1)
1
2n-1
+n
1
2n
],
设Tn=1
1
2
+2
1
22
+3•
1
23
+…+(n-1)
1
2n-1
+n
1
2n
   ①
所以
1
2
Tn=1
1
22
+2
1
23
+3•
1
24
+…+(n-1)
1
2n
+n
1
2n+1
  ②
①-②可得
1
2
Tn=
1
2
+
1
22
+
1
23
+…+
1
2n
-n
1
2n+1

=
1
2
(1-
1
2n
)
1-
1
2
-n
1
2n+1
=1-
1
2n
-n
1
2n+1
=1-
n+2
2n+1

故Tn=2-
n+2
2n
,故Sn=
n
2
+2-
n+2
2n
=
n+4
2
-
n+2
2n
点评:本题考查等比关系的确定和错位相减法求和,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案