精英家教网 > 高中数学 > 题目详情

如图已知矩形面积为120,在矩形内随机撒1000颗黄豆,落在阴影部分内的黄豆有250颗,估计阴影部分的面积是               

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最大的实数t,使cn
1
t
(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3(如在a1与a2之间插入30个3,a2与a3之间插入31个3,a3与a4之间插入32个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否为数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知问题:上海迪斯尼工程某 施工工地上有一堵墙,工程队欲将长为4a(a>0)的建筑护栏(厚度不计)借助这堵墙围成矩形的施工区域(如图1),求所得区域的最大面积.解决这一问题的一种方法是:作出护栏关于墙面的轴对称图形(如图2),则原问题转化为“已知矩形周长为8a,求面积的最大值”从而轻松获解.参考这种借助对称图形解决问题的方法,对于下列情形:已知两堵墙互相垂直围成“L”形,工程队将长为4a(a>0)的建筑护栏借助墙角围成四边形的施工区域(如图3),可求得所围区域的最大面积为
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

科目:高中数学 来源:2015届陕西省高一下学期期末考试数学试卷(解析版) 题型:解答题

如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形,记,求当角取何值时, 矩形ABCD的面积最大?并求出这个最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)第一题满分7分,第二题满分7分.

如图,围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为的一扇门,已知旧墙的维修费用为元/m,新墙的造价为元/m,一扇门的造价为元,设利用的旧墙的长度为m,总造价为元.

(1)将表示为的函数;

(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)第一题满分7分,第二题满分7分.

如图,围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为的一扇门,已知旧墙的维修费用为元/m,新墙的造价为元/m,一扇门的造价为元,设利用的旧墙的长度为m,总造价为元.

(1)将表示为的函数;

(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

同步练习册答案