精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)已知函数f(x)=2x-1,对于满足0<x1<x2的任意x1,x2,给出下列结论:
(1)(x2-x1)[f(x2)-f(x1)]<0    
(2)x2f(x1)<x1f(x2
(3)f(x2)-f(x1)>x2-x1           
(4)
f(x1)+f(x2)
2
>f(
x1+x2
2

其中正确结论的序号是(  )
分析:本题要借助指数函数的图象与性质来研究,对四个命题的形式加以变化变成规范的形式,利用相关的性质判断即可.
对于选项(1)由于)(x2-x1)[f(x2)-f(x1)]<0 等价于
f( x 2)-f( x 1)
x 2-x 1
<0故可借助函数的图象的单调性得出结论
对于选项(2)由于x2f(x1)<x1f(x2)等价于
f( x 2)
x 2
f( x 1)
x 1
,可借助函数图象上点的几何意义得出结论
对于选项(3)由于f(x2)-f(x1)>x2-x1?
f( x 2)-f( x 1)
x 2-x 1
>1
,故可借助函数的图象上点的切线斜率变化规律得出结论
对于选项(4)
f(x1)+f(x2)
2
>f(
x1+x2
2
)说明函数是一个凹函数,以此由函数图象即可得出结论.
解答:(1)∵f(x)=2x-1为R上的单调增函数,故满足0<x1<x2的任意x1,x2,总有f(x1)<f(x2),即f(x2)-f(x1)>0,∴(x2-x1)[f(x2)-f(x1)]>0,故(1)错误;
(2)设y=
f(x)
x
=
2x-1
x
=
f(x)-0
x-0
,其几何意义为f(x)图象上的点与原点连线斜率,由函数f(x)=2x-1在(0,+∞)上的图象可知y=
f(x)
x
为增函数,∵0<x1<x2
f(x 1)
x 1
f(x 2)
x 2
,即x2f(x1)<x1f(x2),(2)正确;
(3)∵函数f′(x)=2xln2,由x>0,∴2xln2∈(ln2,+∞),即存在x0,使f′(x0)<1,而f(x2)-f(x1)>x2-x1?
f( x 2)-f( x 1)
x 2-x 1
>1
?函数f(x)在所给的区间上导数值恒大于1,∴(3)错误;
(4)
f(x1)+f(x2)
2
>f(
x1+x2
2
)反映函数f(x)为凹函数,由f(x)=2x-1的图象可知此函数在(0,+∞)上确为凹函数,(4)正确
故正确结论的序号是:(2)、(4)
故选 C
点评:本题考查指数函数的图象,以及指数函数的单调性、凸凹性、变化率等性质的抽象表达,数形结合解决问题的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案