精英家教网 > 高中数学 > 题目详情
(2012•石景山区一模)某几何体的三视图如图所示,则它的体积是(  )
分析:根据三视图可知,几何体是组合体,下面是正方体,棱长为2,上面是侧棱长为2,底面边长为2的正四棱锥,求出相应的体积,即可求得结论.
解答:解:由题意知,根据三视图可知,几何体是组合体,下面是正方体,棱长为2,体积为8;
上面是侧棱长为2,底面边长为2的正四棱锥,所以底面积为4,高为
4-2
=
2
,故体积为
4
2
3

∴几何体的体积为8+
4
2
3

故选B.
点评:本题是基础题,考查三视图复原几何体的判定,几何体的体积的求法,考查空间想象能力,计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•石景山区一模)在复平面内,复数
2-i
1+i
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA=
2
2
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)已知函数f(x)=x2+2alnx.
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数g(x)=
2x
+f(x)
在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)圆
x=2cosθ
y=2sinθ+2
的圆心坐标是(  )

查看答案和解析>>

同步练习册答案