精英家教网 > 高中数学 > 题目详情
tan75°
1-tan275°
=
-
3
6
-
3
6
分析:利用二倍角的正切公式,即可得到结论.
解答:解:
tan75°
1-tan275°
=
1
2
2tan75°
1-tan275°
=
1
2
tan150°
=
1
2
•(-
3
3
)
=-
3
6

故答案为:-
3
6
点评:本题考查二倍角的正切公式,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各式的值
(1)(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)
=
 

(2)cos200°cos80°+cos110°cos10°=
 

(3)tan10°tan20°+tan20°tan60°+tan60°tan10°=
 

(4)cos
π
7
cos
7
cos
3
7
π
=
 

(5)sin20°sin40°sin80°=
 

(6)cos20°+cos100°+cos140°=
 

(7)(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列命题:
①函数y=tanx在第一象限是增函数;
②函数y=cos2(
π
4
-x)
是偶函数;
③函数y=4sin(2x-
π
3
)
的一个对称中心是(
π
6
,0);
④cos(x+y)+cos(x-y)=2cosxcosy
⑤cos2α(1+tan2α)=1
写出所有正确的命题的题号:
③④⑤
③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β≠kπ+
π
2
(k∈Z),且sinθ+cosθ=2sinα , sinθcosθ=sin2β
.求证:
1-tan2α
1+tan2α
=
1-tan2β
2(1+tan2β)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)函数y=3sin
x
2
+4cos
x
2
的定义域为[0,2π],则值域为[-5,5];
(2)三角方程tan(5x+
9
)=
2
在[0,π]内有5个解;
(3)对任意的α∈R,三角公式sin2α=
2tanα
1+tan2α
是一定成立的;
(4)函数y=cosx与y=arccosx(|x|≤1)互为反函数.
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

α∈(π,
3
2
π)
,化简:
cosα
1+tan2α
+
sinα
1+cot2α
=
-1
-1

查看答案和解析>>

同步练习册答案