精英家教网 > 高中数学 > 题目详情
a=log
1
2
3
b=(
1
3
)0.2
c=2
1
3
,则a,b,c的大小顺序为(  )
A、c<b<a
B、a<b<c
C、b<a<c
D、c<a<b
分析:利用对数函数和指数函数的单调性即可得出.
解答:解:∵a=log
1
2
3
=-log23<0,0<b=(
1
3
)0.2<(
1
3
)0
=1,c=2
1
3
>20=1.
∴a<b<c.
故选:B.
点评:本题考查了对数函数和指数函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a=log
1
2
3
b=(
1
3
)0.2
c=2
1
3
,则a,b,c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a=log
1
2
3
b=(
1
3
)0.2
,c=cos2,则(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

a=log
1
2
3
b=(
1
2
)3
c=3
1
2
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a=log
1
2
3
b=(
1
3
)0
,c=20.3,则a、b、c的大小顺序为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a=log
1
2
3
b=(
1
3
)0.2
c=(
1
3
)-1
,则(  )

查看答案和解析>>

同步练习册答案