精英家教网 > 高中数学 > 题目详情

已知数列是以q为公比的等比数列(q为常数)
(I)求数列的通项公式;
(II)求证:是等比数列,半求的通项公式;
(III)求的前2n项和T2n

(Ⅰ)
(II)略
(III)若

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(Ⅰ)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2-2010,求整数q的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(Ⅲ)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=1,a2=2,an>0,bn=
anan+1
(n∈N*),且{bn}是以q为公比的等比数列.
(I)证明:an+2=anq2
(II)若cn=a2n-1+2a2n,证明数列{cn}是等比数列;
(III)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+…+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市高三10月月考文科数学卷 题型:解答题

已知数列是以q为公比的等比数列(q为常数)

(I)求数列的通项公式;

(II)求证:是等比数列,半求的通项公式;

(III)求的前2n项和T2n

 

查看答案和解析>>

同步练习册答案