精英家教网 > 高中数学 > 题目详情
求数列,,,…的通项公式,并求其前n项和.

解:an=n+.

Sn=(1+)+(2+)+(3+)+…+(n+)

=(1+2+3+…n)+(+++ …+)=+=+1-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是以4为首项的正数数列,双曲线an-1y2-anx2=an-1an的一个焦点坐标为(0,
cn
)(n≥2)
,且c1=6,一条渐近线方程为y=
2
x

(1)求数列{cn}(n∈N*)的通项公式;
(2)试判断:对一切自然数n(n∈N*),不等式
1
c1
+
2
c2
+
3
c3
+…+
n
cn
+
n
3•2n
2
3
是否恒成立?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*)是由正数组成的等差数列,并且a3=5,a4•(a1+a2)=28,bn=pan+1(p为非零实常数)
(1)求数列{an}(n∈N*)的通项
(2)求b1+b2+…+bn(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)已知函数f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差数列.
(1)求数列{an}(n∈N*)的通项公式;
(2)设g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整数解的个数,求g(k);
(3)记数列{
12
an
}
的前n项和为Sn,是否存在正数λ,对任意正整数n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)某高科技企业研制出一种型号为A的精密数控车床,A型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为A型车床所创造价值的第一年).若第1年A型车床创造的价值是250万元,且第1年至第6年,每年A型车床创造的价值减少30万元;从第7年开始,每年A型车床创造的价值是上一年价值的50%.现用an(n∈N*)表示A型车床在第n年创造的价值.
(1)求数列{an}(n∈N*)的通项公式an
(2)记Sn为数列{an}的前n项的和,Tn=
Sn
n
.企业经过成本核算,若Tn>100万元,则继续使用A型车床,否则更换A型车床.试问该企业须在第几年年初更换A型车床?(已知:若正数数列{bn}是单调递减数列,则数列{
b1+b2+…+bn
n
}
也是单调递减数列).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•青浦区一模)已知f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…(n∈N*)成等差数列.
(1)求数列{an}(n∈N*)的通项公式;
(2)设g(k)是不等式log2x+log2(3
ak
-x)≥2k+3(k∈N*)
整数解的个数,求g(k);
(3)在(2)的条件下,试求一个数列{bn},使得
lim
n→∞
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+…
1
g(n)g(n+1)
bn]=
1
5

查看答案和解析>>

同步练习册答案