精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
2
x2+x-2lnx+a在区间(0,2)上恰有一个零点,则实数a取值范围是
{a|a=-
3
2
,或a≤2ln2-4}
{a|a=-
3
2
,或a≤2ln2-4}
分析:由题设条件利用导数性质推导出f(x)在(0,1)上递减,在(1,+∞)上递增,要使f(x)在(0,2)上恰有一个零点,需要f(1)=0或f(2)<0,由此能求出实数a取值范围.
解答:解:∵函数f(x)=
1
2
x2+x-2lnx+a,
∴函数f(x)的定义域为(0,+∞),f(x)=x-
2
x
+1=
(x+2)(x-1)
x

f(x)在(0,1)上递减,在(1,+∞)上递增,
要使f(x)在(0,2)上恰有一个零点,
结合其图象和性质,需要f(1)=
1
2
+1-0+a
=0或f(2)=
1
2
×4
+2-2ln2+a<0,
解得a=-
3
2
,或a≤2ln2-4.
故答案为:{a|a=-
3
2
,或a≤2ln2-4}.
点评:本题考查利用导数研究函数的极值的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
2
x
   (x>0)
-
1
2
x
     (x<0)
的图象的大致形状是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2x-1
+lg(8-2x)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
2x+1
,则该函数在(-∞,+∞)上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
12x+1
的值域为
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2x+1
-
1
2

(1)判断函数f(x)的奇偶性;
(2)设g(x)=x(
1
2x+1
-
1
2
),求证:对于任意x≠0,都有g(x)<0.

查看答案和解析>>

同步练习册答案