精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的首项为a1,公比为q(q≠1),若i,j,k∈N+且1≤i<j<k≤n(n≥3),则aiajak不同的值共有______种.
∵aiajak=a1qi+j+k-3
∴aiajak不同的值的个数由取决于i+j+k的取值个数,
又i,j,k∈N+且1≤i<j<k≤n(n≥3),
∴i+j+k的最大值为(n-2)+(n-1)+n,最小值为1+2+3,
而这个范围之间共有[(n-2)+(n-1)+n]-(1+2+3)+1=3n-8个整数,
则aiajak不同的值共有3n-8种.
故答案为:3n-8
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案