精英家教网 > 高中数学 > 题目详情

(本题14分)判断下列函数的奇偶性

(1);         (2)

(本题14分)

解(1)设y=f(x)

 f(-x) =f(x)  所以函数为偶函数

(2)设y=f(x) =

 f(-x)= =-f(x) 所以函数为奇函数

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省高三5月月考理科数学试卷(解析版) 题型:解答题

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:汕头市2009-2010学年度第二学期高三级数学综合测练题(理二) 题型:解答题

(本题满分14分)如图,设抛物线)的准线与轴交于,焦点为,以为焦点,离心率的椭圆与抛物线轴上方的一个交点为.  

(1)当时,求椭圆的方程;

(2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;

(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)在一个特定时段内,以点为中心的7海里以内海域被设为警戒水域.点正北55海里处有一个雷达观测站.某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距海里的位置,经过40分钟又测得该船已行驶到点北偏东+(其中

sin=)且与点相距海里的位置C.

(Ⅰ)求该船的行驶速度(单位:海里/小时);

(Ⅱ)该船不改变航行方向继续行驶,判断它是否会进入警戒水域;若进入请求出经过警戒水域的时间,并说明理由.

南安一中2010-2011学年高一年(下)期末考试数学试卷

查看答案和解析>>

同步练习册答案