精英家教网 > 高中数学 > 题目详情
等比数列{an}的前n项和Sn=2n-1,则a12+a22+a32+…+an2=
 
分析:列举等比数列的前n项和的各项,求出首项和公比即可求出数列的通项公式,然后得到an2的通项公式发现也为等比数列,根据等比数列的前n项和的公式求出即可.
解答:解:令n=1,得到a1=s1=21-1=1;
令n=2,得到a1+a2=s2=22-1=3,得到a2=2,
所以等比数列的首项为1,公比为2,
得到an=2n-1
则an2=22n-2=4n-1,是首项为1,公比为4的等比数列,
所以a12+a22+a32+…+an2=
1-4n
1-4
=
4n-1
3

故答案为
4n-1
3
点评:此题考查学生会根据数列的前n项的和求出等比数列的通项公式,且会根据首项和公比求等比数列的前n项的和,学生做题时注意利用列举法求数列的各项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn是等比数列{an}的前n项和,对于任意正整数n,恒有Sn>0,则等比数列{an}的公比q的取值范围为
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)统计某校高三年级100名学生的数学月考成绩,得到样本频率分布直方图如下图所示,已知前4组的频数分别是等比数列{an}的前4项,后6组的频数分别是等差数列{bn}的前6项,
(1)求数列{an}、{bn}的通项公式;
(2)设m、n为该校学生的数学月考成绩,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

同步练习册答案