精英家教网 > 高中数学 > 题目详情
甲、乙两人参加一项智力测试.已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每位参赛者都从备选题中随机抽出3道题进行测试,至少答对2道题才算通过.
(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;
(Ⅱ)求甲、乙两人至少有一人通过测试的概率.
(1)由题设知X可能取的值为0,1,2,3,
P(X=0)=
C35
C05
C310
=
1
12

P(X=1)=
C25
C15
C310
=
5
12

P(X=2)=
C15
C25
C310
=
5
12

P(X=3)=
C05
C35
C310
=
1
12

EX=0×
1
12
+1×
5
12
+2×
5
12
+3×
1
12
=
3
2

(2)设甲测试合格记为事件A,设乙测试合格记为事件B,
则P(A)=
C25
C15
+
C35
C310
=
1
2

P(B)=
C28
C12
+
C38
C310
=
14
15

∴甲、乙两人至少有一人测试合格的概率:
P=1-P(
.
A
)P(
.
B
)=1-(1-
1
2
)(1-
14
15
)=
29
30
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•朝阳区三模)甲、乙两人参加一项智力测试.已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每位参赛者都从备选题中随机抽出3道题进行测试,至少答对2道题才算通过.
(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;
(Ⅱ)求甲、乙两人至少有一人通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加一项智力竞赛.在同一轮竞赛中,两人测试同一套试卷,成绩由次到优,依次分为“合格”,“良好”,“优秀”三个等级.根据以往成绩可知,甲取得“合格”,“良好”,“优秀”的概率分别为0.6,0.3,0.1;乙取得“合格”,“良好”,“优秀”的概率分别为0.4,0.4,0.2.设甲、乙两人参加竞赛的过程相互独立,且每个人的前后各轮次竞赛成绩互不影响.
(Ⅰ)求在一轮竞赛中甲取得的成绩等级优于乙取得的成绩等级的概率;
(Ⅱ)求在独立的三轮竞赛中,至少有两轮甲取得的成绩等级优于乙取得的成绩等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加一项智力测试。已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题。规定每位参赛者都从备选题中随机抽出3道题进行测试,至少答对2道题才算通过。(I)求甲乙两人均通过测试的概率;(II)求甲、乙两人至少有一人通过测试的概率。

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试(重庆卷)数学理工类模拟试卷(三) 题型:解答题

甲、乙两人参加一项智力测试.已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题,规定每位参赛者都从备选项中随机抽出3道题进行测试,至少答对2道题才算通过.

(Ⅰ)求甲答对试题数x的概率分布及数学期望;

(Ⅱ)求甲、乙两人至少有一人通过测试的概率.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人参加一项智力竞赛.在同一轮竞赛中,两人测试同一套试卷,成绩由次到优,依次分为“合格”,“良好”,“优秀”三个等级.根据以往成绩可知,甲取得“合格”,“良好”,“优秀”的概率分别为0.6,0.3,0.1;乙取得“合格”,“良好”,“优秀”的概率分别为0.4,0.4,0.2.设甲、乙两人参加竞赛的过程相互独立,且每个人的前后各轮次竞赛成绩互不影响.
(Ⅰ)求在一轮竞赛中甲取得的成绩等级优于乙取得的成绩等级的概率;
(Ⅱ)求在独立的三轮竞赛中,至少有两轮甲取得的成绩等级优于乙取得的成绩等级的概率.

查看答案和解析>>

同步练习册答案