判断下列函数的奇偶性:
(1)f(x)=|x+1|-|x-1|;(2)f(x)=(x-1)·
;
(3)
;(4)![]()
⑴奇函数,⑵既不是奇函数也不是偶函数,⑶奇函数,⑷奇函数
判断函数的奇偶性应依照定义解决,但都要先考查函数的定义域。
(1)函数的定义域x∈(-∞,+∞),对称于原点.
∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),
∴f(x)=|x+1|-|x-1|是奇函数.
(2)先确定函数的定义域.由
≥0,得-1≤x<1,其定义域不对称于原点,所以f(x)既不是奇函数也不是偶函数.
(3)去掉绝对值符号,根据定义判断.
由
得![]()
故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x+2>0.
从而有f(x)=
=
,∴f(-x)=
=-
=-f(x)
故f(x)为奇函数.
(4)∵函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x>0时,-x<0,
∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x)(x>0).
当x<0时,-x>0,∴f(-x)=-x(1-x)=-f(x)(x<0).
故函数f(x)为奇函数.
1函数的奇偶性是函数的一个整体性质, 定义域具有对称性 ( 即若奇函数或偶函数的定义域为D, 则
时
) 是一个函数为奇函数或偶函数的必要条件
2分段函数的奇偶性一般要分段证明.③判断函数的奇偶性应先求定义域再化简函数解析式.
题型2:证明抽象函数的奇偶性
科目:高中数学 来源: 题型:
|
| 1+x2 |
| 1+sinx-cosx |
| 1+sinx+cosx |
| x |
| ax-1 |
| x |
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com