精英家教网 > 高中数学 > 题目详情

函数是定义在R上的偶函数,且对任意实数x,都有已知当

(1)求时,函数的表达式;

   (2)求的解析式;

   (3)若函数的最大值为,在区间[-1,3]上,解关于x的不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若f(2)=2,un=
f(2n)2n
(n∈N*)
,求证数列{un}是等差数列,并求{un}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,设g(x)=
f(x)+f(-x)
2
h(x)=
f(x)-f(-x)
2

①试判断g(x)与h(x)的奇偶性;
②试判断g(x),h(x)与f(x)的关系;
③由此你能猜想得出什么样的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)和g(x)是定义在R上的两个函数,x1、x2是R上任意两个不等的实根,设|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且y=f(x)为奇函数,判断函数y=g(x)的奇偶性并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
1
2
)=-
1
2
,令bn=
2n
f(2n)
Sn
表示数列{bn}的前n项和.试问:是否存在关于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案