精英家教网 > 高中数学 > 题目详情
已知y=f(x)的定义域为R,且恒有等式2f(x)+f(-x)+2x=0对任意的实数x成立.
(Ⅰ)试求f(x)的解析式;
(Ⅱ)讨论f(x)在R上的单调性,并用单调性定义予以证明.
分析:(Ⅰ)直接由2f(x)+f(-x)+2x=0得到2f(-x)+f(x)+2-x=0;两个方程联立即可求出求f(x)的解析式;
(Ⅱ)直接根据单调性的证明过程(取值,作差,变形,定号)证明即可.(注意整理过程不能出错)
解答:解:(Ⅰ)∵2f(x)+f(-x)+2x=0       ①对任意的实数x成立;
∴2f(-x)+f(x)+2-x=0     ②;
①×2-②得:3f(x)+2×2x-2-x=0⇒f(x)=
1
3
(2-x-2×2x);
(Ⅱ)函数在实数集上递减.
证明:任取a<b,
则f(a)-f(b)=
1
3
(2-a-2×2a)-
1
3
(2-b-2×2b
=
1
3
[(2-a-2-b)-2×(2a-2b)]
=
1
3
[(
1
2a
-
1
2b
)-2×(2a-2b)]
=
1
3
(2b-2a)(
1
2a+b
+2);
∵a<b;
∴2b-2a>0,2a+b>0;
∴(2b-2a)(
1
2a+b
+2)>0;
∴f(a)-f(b)>0⇒f(a)>f(b).
∴函数f(x)在R上递减.
点评:本题考点是抽象函数及其应用,考查用赋值法求函数值,以及灵活利用所给的恒等式证明函数的单调性,此类题要求答题者有较高的数学思辨能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(2)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案