精英家教网 > 高中数学 > 题目详情
已知椭圆C的长轴两端点为A、B.若C上存在一点Q,且∠AQB=120°,求椭圆C的离心率的范围.
分析:由对称性不防设Q在x轴上方,坐标为(x0,y0),进而可表示出tan∠AQB整理出关于x0和y0的关系式,同时把Q点代入椭圆方程,表示出y0进而根据y0的范围确定a和c的不等式关系,求得离心率的范围.
解答:解:由对称性不防设Q在x轴上方,坐标为(x0,y0),
则tan∠AQB=
kQB-kQA
1+ kQB KQA
=-
3
,即
y0
x0-a
y0
x0+a
1+
y0
x0-a
y0
x0+a
=-
3

整理得
2ay0
x
2
0
-a2+y 20
=-
3
,①
∵Q在椭圆上,
x
2
0
=a2(1-
y
2
0
b2
)
,代入①得y0=
2ab2
3
c2

∵0<y0≤b
∴0<
2ab2
3
c2
≤b,化简整理得3e4+4e2-4≥0,
解得
6
3
≤e<1
点评:本题主要考查了椭圆的应用.涉及了直线的斜率和基本不等式等知识,难度不大但计算较繁琐,考查了学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的长轴长与短轴长之比为
3
5
,焦点坐标分别为F1(-2,0),F2(2,0).
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0),P是椭圆C上异于A、B的任意一点,直线AP、BP分别交y轴于M、N,求
OM
ON
的值;
(3)在(2)的条件下,若G(s,0),H(k,0),且
GM
HN
,(s<k),分别以OG、OH为边作两正方形,求此两正方形的面积和的最小值,并求出取得最小值时的G、H点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浦东新区三模)已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)由抛物线弧y2=4mx(0≤x≤
2m
3
)
和椭圆弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲线叫“抛椭圆”,是否存在以原点O为直角顶点,另两个顶点A1、A2落在“抛椭圆”上的等腰直角三角形OA1A2,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浦东新区三模)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)是否存在实数m,使得△PF1F2的边长为连续的自然数.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第8章 圆锥曲线):8.1 椭圆(解析版) 题型:解答题

已知椭圆C的长轴两端点为A、B.若C上存在一点Q,且∠AQB=120°,求椭圆C的离心率的范围.

查看答案和解析>>

同步练习册答案