精英家教网 > 高中数学 > 题目详情

函数,且最小值等于,则正数的值为               .

 

【答案】

1

【解析】

试题分析:依题意,

最小值等于.

考点:函数的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2等,定义函数f(x)=x-[x],给出以下命题:
①函数f(x)的最小值为0;
②方程f(x)=
12
有且仅有一个解;
③函数f(x)是增函数;
④函数f(x)是周期函数.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
π
2

C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-
y2
9
=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是
 
(把所有正确的命题的选项都填上)

查看答案和解析>>

科目:高中数学 来源:2010年全国统一高考数学预测试卷(理科)(解析版) 题型:解答题

给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是    (把所有正确的命题的选项都填上)

查看答案和解析>>

科目:高中数学 来源:2010年河南省许昌市长葛三高高考数学预测试卷(文科)(解析版) 题型:解答题

给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是    (把所有正确的命题的选项都填上)

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(湖南卷解析版) 题型:解答题

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

同步练习册答案