精英家教网 > 高中数学 > 题目详情
(2011•安徽模拟)若函数f(x)=(x-2)(x2+c)在x=1处有极值,则函数f(x)的图象x=-1处的切线的斜率为(  )
分析:对函数f(x)=(x-2)(x2+c)进行求导,根据函数在x=1处有极值,可得f′(1)=0,求出c值,然后很据函数导数和函数切线的斜率的关系即可求解.
解答:解:∵函数f(x)=(x-2)(x2+c)在x=1处有极值,
∴f′(x)=(x2+c)+(x-2)×2x,
∵f′(1)=0,∴(c+1)+(1-2)×2=0,
∴c=1,
∴f′(x)=(x2+1)+(x-2)×2x,
∴函数f(x)的图象x=-1处的切线的斜率为f′(-1)=(1+1)+(-1-2)×(-2)=2+6=8,
故选C.
点评:本题主要考查函数在某点取得极值的条件,以及函数的导数的求法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值;
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知f(x)是奇函数,当x≥0时,f(x)=ex-1(其中e为自然对数的底数),则f(ln
1
2
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且AB⊥BF,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知函数f(x)=sinx-
x2
的导数为f'(x),且f'(x)的最大值为b,若g(x)=2lnx-2bx2-kx在[1,+∞)上单调递减,则实数k的取值范围是
[0,+∞)
[0,+∞)

查看答案和解析>>

同步练习册答案