精英家教网 > 高中数学 > 题目详情
(2012•红桥区一模)已知函数f(x)=
1
2
x-k,g(x)=|x-1|+|x-3|-16,若对于任意x1∈[-2,12],总存在x0∈[-2,12],使得g(x0)=f(x1)成立,则k的取值范围是(  )
分析:由任意的x1∈[-2,12],都存在x0∈[-2,12],使得g(x0)=f(x1),可得f(x)=
1
2
x-k在x1∈[-2,12]的值域为g(x)=|x-1|+|x-3|-16在x0∈[-2,12]的值域的子集,构造关于k的不等式组,可得结论.
解答:解:∵f(x)=
1
2
x-k,x1∈[-2,12]
∴f(x)∈[-1-k,6-k]
∵g(x)=|x-1|+|x-3|-16,
∴g(x)=
-12-2x,x<1
-14    ,1≤x≤3
2x-20,x>3

∵x0∈[-2,12]
∴g(x)∈[-14,4]
∵任意的x1∈[-2,12],都存在x0∈[-2,12],使得g(x0)=f(x1),
∴[-1-k,6-k]⊆[-14,4]即
6-k≤4
-1-k≥-14
解得2≤k≤13
故选C.
点评:本题考查的知识点是二次函数在闭区间上的最值,其中根据已知分析出“f(x)=
1
2
x-k在x1∈[-2,12]的值域为g(x)=|x-1|+|x-3|-16在x0∈[-2,12]的值域的子集”是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•红桥区一模)已知全集U=R,集合M={x|-1<x<3},N={x|x≤-3或x≥2},则(?UN)∩M=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•红桥区一模)在二项式(
2
x
+x)9
的展开式中,含x3的项的系数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•红桥区一模)已知两条直线l1:ax+(a-1)y-1=0,l2:3x+ay+2=0,则a=-2是l1⊥l2的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•红桥区一模)i是虚数单位,若z=
-ai
1-2i
的实部与虚部之差为1,则实数a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•红桥区一模)如图所示,双曲线
x2
16
-
y2
20
=1
上一点P到右焦点F2的距离是实轴两端点A1,A2到右焦点F2距离的等差中项,则P点到左焦点F1的距离为(  )

查看答案和解析>>

同步练习册答案