精英家教网 > 高中数学 > 题目详情

如右图,在直角梯形ABCD中,AB//DC,ADAB ,AD=DC=2,AB=3,点是梯形内或边界上的一个动点,点NDC边的中点,的最大值是________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如右图,在直角梯形ABCD中,∠B=90°,DC∥AB,BC=CD=
12
AB=2,G为线段AB的中点,将△ADG沿GD折起,使平面ADG⊥平面BCDG,得到几何体A-BCDG.
(1)若E,F分别为线段AC,AD的中点,求证:EF∥平面ABG;
(2)求证:AG⊥平面BCDG;
(3)求VC-ABD的值
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A为PD的中点,如下左图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,M,N分别是线段AB,BC的中点,如右图.
(1)求证:SA⊥平面ABCD;
(2)求证:平面AEC∥平面SMN.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且分别是线段的中点,如右图.

   (1)求证:平面ABCD;

   (2)求证:平面∥平面

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省南昌市高三(上)调研数学试卷(文科)(解析版) 题型:解答题

在直角梯形PBCD中,,BC=CD=2,PD=4,A为PD的中点,如下左图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,M,N分别是线段AB,BC的中点,如右图.
(1)求证:SA⊥平面ABCD;
(2)求证:平面AEC∥平面SMN.

查看答案和解析>>

科目:高中数学 来源:2010年广东省茂名市高考数学一模试卷(文科)(解析版) 题型:解答题

如右图,在直角梯形ABCD中,∠B=90°,DC∥AB,BC=CD=AB=2,G为线段AB的中点,将△ADG沿GD折起,使平面ADG⊥平面BCDG,得到几何体A-BCDG.
(1)若E,F分别为线段AC,AD的中点,求证:EF∥平面ABG;
(2)求证:AG⊥平面BCDG;
(3)求VC-ABD的值

查看答案和解析>>

同步练习册答案