精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=-60,a17=-12.
(1)求通项an
(2)求此数列前30项的绝对值的和.
(1)由等差数列的通项公式可得:a17=a1+16d,
所以-12=-60+16d,
∴d=3
∴an=-60+3(n-1)=3n-63.(6分)
(2)由an≤0,则3n-63≤0?n≤21,
∴|a1|+|a2|+…+|a30|
=-(a1+a2+…+a21)+(a22+a23+…+a30
=(3+6+9+…+60)+(3+6+…+27)
=
(3+60)
2
×20+
(3+27)
2
×9=765,
所以此数列前30项的绝对值的和为765.(6分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案