精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,an+1=
an
an+2
,则a5=
1
31
1
31
分析:因为a1=1,an+1=
an
an+2
,则令n=1并把a1代入求得a2,再令n=2并把a2代入求得a3,依此类推当n=4时,求出a5即可.
解答:解:因为,a1=1,an+1=
an
an+2

则令n=1并把a1代入求得a2=
1
3

把n=2及a2代入求得a3=
1
7

把n=3及a3代入求得a4=
1
15

把n=4及a4代入求得a5=
1
31

故答案为
1
31
点评:考查数列的递推式求数列各项,是简单直接应用.解题时要注意计算准确.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案