精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC -A1B1C1中,A1A⊥底面ABC,AB=AC,D是BC的中点。
(Ⅰ)求证:BC⊥平面A1AD;
(Ⅱ)若∠BAC=90°,BC=A1D=4,求三棱柱ABC-A1B1C1的体积。

解:(Ⅰ)证明:因为A1A⊥底面ABC,且BC底面ABC,
所以A1A⊥BC,
因为AB=AC,D是BC的中点,
所以AD⊥ BC,
因为A1A∩AD=A,
所以BC⊥平面A1AD;
(Ⅱ)因为∠BAC=90°,D是BC的中点,BC=4,
所以
所以S△ABC=
因为A1A⊥底面ABC,且AD底面ABC,
所以A1A⊥AD,
在Rt△A1AD中,A1D=4,
所以
所以三棱柱ABC-A1B1C1的体积,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案