精英家教网 > 高中数学 > 题目详情

判断下列函数的奇偶性:

(1)f(x)=;(2)f(x)=x3-2x.

答案:
解析:

  解:(1)函数的定义域为{x|x≠-1},不关于原点对称,

  所以f(x)既不是奇函数也不是偶函数.

  (2)函数的定义域为R

  f(-x)=(-x)3-2(-x)=2x-x3=-f(x),所以f(x)是奇函数.


提示:

  思路分析:本题主要考查函数的奇偶性.按奇函数或偶函数的定义进行判断.

  绿色通道:根据奇函数以及偶函数的定义,判断是不是有关系f(-x)=f(x)或f(-x)=-f(x),前者是偶函数,后者是奇函数;如果这两个都不成立,则是非奇非偶函数;说一个函数是非奇非偶函数,只要说明它的定义域关于原点不对称,或找出一特殊值a有f(-a)≠f(a)且f(-a)≠-f(a)即可,而不必套用作差法进行检验;对于选择题或填空题,根据函数图像的对称性进行判断也是捷径之一.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(A)f(x)=
0(x为无理数)
1(x为有理数)
 

(B)f(x)=ln(
1+x2
-x)
 

(C)f(x)=
1+sinx-cosx
1+sinx+cosx
 

(D)f(x)=
x
ax-1
+
x
2
,(a>0,a≠0)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性.
(1)y=lg
tanx+1
tanx-1

(2)f(x)=lg(sinx+
1+sin2x
)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(1)y=x4+
1x2
;         (2)f(x)=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并说明理由.
(1)f(x)=
1-x2
|x+3|-3
;  (2)f(x)=x2-|x-a|+2(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并证明:
(1)f(x)=x+
1x
           (2)f(x)=x4-1.

查看答案和解析>>

同步练习册答案