精英家教网 > 高中数学 > 题目详情

如图所示,直线过原点,且与半圆(x-2)2+y2=1(y>0)交于P、Q,若|OP|=2|PQ|,求此直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知长方形ABCD,AB=2
2
,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.椭圆Γ以A、B为焦点,且过C、D两点.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)过点P(0,2)的直线l交椭圆Γ于M,N两点,是否存在直线l,使得OM⊥ON?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的平面直角坐标系xoy中,已知直线l与半径为1的⊙D相切于点C,动点P到直线l的距离为d,若d=
2
|PD|

(1)求点P的轨迹方程;
(2)直线l过Q(0,2)且与轨迹P交于M、N两点,若以MN为直径的圆过原点O,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网本题有(1),(2),(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-120
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数)
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求证:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2xM(x1,y1),N(x2,y2)两点.

(1)写出直线l的方程;

(2)求x1x2y1y2的值;

(3)求证:OMON.

查看答案和解析>>

同步练习册答案