精英家教网 > 高中数学 > 题目详情
9.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.2B.3C.$\frac{4}{3}$D.5

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.

解答 解:作出不等式组对应的平面区域,
$\frac{y}{x}$的几何意义为区域内的点到原点的斜率,
由图象知,OA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
故OA的斜率k=$\frac{3}{1}$=3.
故选:B

点评 本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为$\frac{\sqrt{2}}{2}$,过左顶点A的直线l与椭圆交于另一点B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若|AB|=$\frac{4}{3}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知⊙C的极坐标方程为:ρ2-4$\sqrt{2}ρsin(θ+\frac{π}{4})+6=0$
(Ⅰ)求圆C在直角坐标系中的圆心坐标,并选择合适的参数,写出圆C的参数方程;
(Ⅱ)点P(x,y)在圆C上,试求u=xy的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一台仪器每启动一次都随机地出现一个5位的二进制数$A=\overline{{a_1}{a_2}{a_3}{a_4}{a_5}}$,其中A的各位数字中a1=1,ak(k=2,3,4,5)出现0的概率为$\frac{1}{3}$,ak(k=2,3,4,5)出现1的概率为$\frac{2}{3}$,记X=a1+a2+a3+a4+a5.当启动仪器一次时,
(Ⅰ)求X=3的概率;
(Ⅱ)求随机变量X的分布列及X的数学期望,并指出当X为何值时,其概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)为定义在区间G上的任意两点x1,x2和任意实数λ(0,1),总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是(  )
①f(x)=$\frac{x}{{e}^{x}}$,②f(x)=$\sqrt{x}$,③f(x)=$\frac{ln(x+1)}{x}$,④f(x)=$\frac{x}{{x}^{2}+1}$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知过点M(-3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为x=-3或5x-12y+15=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l与直线y=x垂直,则直线l的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函数$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为(  )
A.$[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$B.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$
C.$[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$D.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)在定义域的某子区间上满足f(x)=$\frac{1}{λ}f({x-λ})$(λ为正实数),则称其为λ-局部倍缩函数.若函数f(x)在x∈[0,2]时,f(x)=sinπx,且x∈(2,+∞)时,f(x)为λ=2的局部倍缩函数.现有下列4个命题:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;③函数y=f(x)-ln(x-1)有5个零点;④对任意x>0,若不等式f(x)≤$\frac{k}{x}$恒成立,则k的最小值是$\frac{5}{4}$.
则其中所有真命题的序号是①④.

查看答案和解析>>

同步练习册答案