解:(1)∵AF=BF且∠AFB=60°,
∴△ABF是等边三角形
又∵G是FB的中点,
∴AG⊥BF
∵翻折前的等腰梯形ABCD中,E、F分别是CD、AB的中点,
∴EF⊥AB,可得翻折后EF⊥AF,EF⊥BF
∵AF、BF是平面ABF内的相交直线,
∴EF⊥平面ABF
∵AG
平面ABF,
∴AG⊥EF,
∵BF、EF是平面BCEF内的相交直线,
∴AG⊥平面BCEF
(2)取EC中点M,连接MC、MD、MG
∵AF∥DE,AF
平面ABF,DE
平面ABF,
∴DE∥平面ABF,
同理可得:CE∥平面ABF,
∵DE、CE是平面DCE内的相交直线,
∴平面DCE∥平面ABF,可得AG∥DM
∵AG⊥平面BCEF,∴DM⊥平面BCEF,
∵MG
平面BCEF,∴DM⊥MG,
∵梯形BFEC中,EC=FG=BG=1,BF∥EC,
∴四边形EFGC是平行四边形,可得EF∥CG
∵EF⊥平面ABF,
∴CG⊥平面ABF,可得CG⊥BG
Rt△BCG中,BG=1,BC=
,可得CG=
=1
∴Rt△GCM中,GM=
=![]()
又∵DM=
CE=
,
∴Rt△GDM中,DG=
=![]()
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com