精英家教网 > 高中数学 > 题目详情
若数列为( )
A.递增数列
B.递减数列
C.从某项后为递减
D.从某项后为递增
【答案】分析:要判断数列{an}的单调性,利用数列的单调性,只要检验an+1-an=的符号,结合式子讨论n的取值,从而可判断数列的单调性
解答:解:∵an+1-an=
=
=
当n<9时,an+1-an<0,即a9<a8<…<a2<a1
当n=9时,a10=a9
当n>9时,an+1-an>0即an+1>an>…>a11>a10
即数列{an}是从第10项开始递增
故选D
点评:本题主要考查了数列的单调性的定义的应用,数列单调性的判断,解题的关键是对数列项作差,属于基础性试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a(a为常数,a∈R),an+1=2n-3an(n∈N*),设bn=
an2n
(n∈N*).
(1)求数列{bn}所满足的递推公式;
(2)求常数c、q使得bn+1-c=q(bn-c)对一切n∈N*恒成立;
(3)求数列{an}通项公式,并讨论:是否存在常数a,使得数列{an}为递增数列?若存在,求出所有这样的常数a;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-3n.
(1)求数列{an}的首项a1与递推关系式:an+1=f(an);
(2)先阅读下面定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an-
B1-A
}
是以A为公比的等比数列.”请你在第(1)题的基础上应用本定理,求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)对数列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:
①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为an=n2,则{an}为3阶递归数列.
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求证数列{bn}是等比数列;
(2)已知数列{cn}满足cn=
an3n
(n∈N*),试建立数列{cn}的递推公式(要求不含an或bn);
(3)若数列{an}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西师大附中高三5月模拟考试理科数学试卷(解析版) 题型:选择题

对数列,如果,使成立,其中,则称阶递归数列.给出下列三个结论:

①        若是等比数列,则阶递归数列;

②        若是等差数列,则阶递归数列;

③        若数列的通项公式为,则阶递归数列.

其中正确结论的个数是(   )

A.0              B.1             C.2             D.3

 

查看答案和解析>>

同步练习册答案