精英家教网 > 高中数学 > 题目详情

已知PA⊥菱形ABCD所在的平面.求证:面PAC⊥面PBD

答案:
解析:

  如图所示,连结BD、AC,交于O

  ∵四边形ABCD是菱形

  ∴BD⊥AC

  又 PA⊥平面ABCD,

  ∴BD⊥PA

  ∴BD⊥平面PAC

  又 BD平面PBD

  ∴平面PAC⊥平面PBD


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M是棱PC的中点,PA⊥平面ABCD,AC、BD交于点O.
(1)已知:PA=
2
,求证:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若直线PB与平面PAD所成角的正弦值为
6
4
△ABC中,|AB|=|AC|=
7
2
,|BC|=2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)判定AE与PD是否垂直,并说明理由.
(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为
6
2
,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.
(Ⅰ)证明:EA⊥PB;
(Ⅱ)证明:BG∥面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,F为线段PC上一点.
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的 正切值为
7
2
,若二面角E-AF-C的余弦值为
3
13
13
,求
PF
PC
的值.

查看答案和解析>>

同步练习册答案