精英家教网 > 高中数学 > 题目详情

已知数列|an|满足:数学公式,且存在大于1的整数k使数学公式
(1)用a3表示m(不必化简)
(2)用k表示m(化成最简形式)
(3)若m是正整数,求k与m的值.

解:(1)
=
=
=…(4分)
(2)①…(6分)

由①-②得…(8分)
…(10分)
(3)由k>1知|k-7|<7n-1
又∵m∈N*故此有k-7=0
故k=7,m=49…(13分)
分析:(1)根据数列|an|满足:,逐一迭代可求;
(2)由于,所以,错位相减可求;
(3)由(2)知,因为,k>1时,|k-7|<7n-1,根据m∈N*故此有k-7=0,从而可求.
点评:本题的考点是数列递推式,主要考查迭代法,考查错位相减法求数列的和,关键是题意的等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案