精英家教网 > 高中数学 > 题目详情
若f(x)=xe-x在x=x0处的切线与x轴平行,则此切线方程是
 
分析:由题意可得导函数,进而得导数值即斜率,求出x0,即可得出切线方程.
解答:解:∵f(x)=xe-x,∴f′(x)=e-x(1-x),
∴f′(x0)=e-x0(1-x0),
∵f(x)=xe-x在x=x0处的切线与x轴平行,
∴e-x0(1-x0)=0,
∴x0=1,
∴f(x0)=f(1)=
1
e

∴所求切线方程是y=
1
e

故答案为:y=
1
e
点评:本题为切线方程的求解,利用导数求直线的斜率是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对?x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe-x+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xe-x+(x-2)ex-a(e≈2.73).
(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;
(Ⅱ)若a>2时,当x≥1时,f(x)≥
x2-2x+1ex
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=xe-x+(x-2)ex-a(e≈2.73).
(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;
(Ⅱ)若a>2时,当x≥1时,f(x)≥数学公式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对?x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe-x+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案