已知函数h(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,h(
)=16,h(1)=8,求h(x)及其定义域.
科目:高中数学 来源:福建省安溪一中、惠安一中、养正中学2011-2012学年高一上学期期中联考数学试题 题型:044
若函数f(x)满足下列条件:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(Ⅱ)已知函数h(x)=lg
具有性质M,求a的取值范围;
(Ⅲ)试探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=
(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函数,指出哪些函数一定具有性质M?并加以证明.
查看答案和解析>>
科目:高中数学 来源:辽宁省葫芦岛一高2010-2011学年高二下学期第一次月考数学理科试题 题型:044
已知函数f(x)=x2+bsinx-2(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x)-F(-x)=0
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调递减,求实数a的取值范围;
(3)函数h(x)=ln(1+x2)-
f(x)-k有几个零点?
查看答案和解析>>
科目:高中数学 来源:山东省潍坊市三县2012届高三上学期12月联考数学文科试题 题型:044
已知函数f(x)=x2+bsinx-2,F(x)=f(x)+2,且对于任意实数x,恒有F(x)-F(-x)=0.
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调递减,求实数a的取值范围;
(3)函数h(x)=ln(1+x2)-
f(x)-k有几个零点?(注:
)
查看答案和解析>>
科目:高中数学 来源:2014届浙江省高二下学期期末文科数学试卷(解析版) 题型:填空题
若函数f(x)在定义域D内某区间I上是增函数,且
在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com