精英家教网 > 高中数学 > 题目详情
由椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的顶点B(0,-b)引弦BP,求BP长的最大值.
分析:设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)在x轴上的顶点分别为E(-a,0)、F(a,0),结合图形可知BP长的最大值是BE和BF的长,用两点间距离公式能够推导出BP长的最大值.
解答:精英家教网解:设椭圆
x2
a2
+
y2
b2
=1
(a>b>0),
在x轴上的顶点分别为E(-a,0)、F(a,0),
结合图形可知BP长的最大值是BE和BF的长,其最大值为|BE|=
a2+b2

答案:
a2+b2
点评:本题考查椭圆的性质,作出图形数形结合事半功倍.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线为x=-4,且与抛物线y2=8x有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是该椭圆的左准线与x轴的交点,过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落在由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界),求此时直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

与圆类似,连接圆锥曲线上两点的线段叫做圆锥曲线的弦.过有心曲线(椭圆、双曲线)中心(即对称中心)的弦叫做有心曲线的直径.对圆x2+y2=r2,由直径所对的圆周角是直角出发,可得:若AB是圆O的直径,M是圆O上异于A、B的一点,且AM,BM均与坐标轴不平行,则kAM•kBM=-1.类比到椭圆
x2
a2
+
y2
b2
=1
,类似结论是
若AB是椭圆
x2
a2
+
y2
b2
=1
的直径,M是椭圆上异于A、B的一点,且AM、BM均与坐标轴不平行,则kAM•kBM=-
b2
a2
若AB是椭圆
x2
a2
+
y2
b2
=1
的直径,M是椭圆上异于A、B的一点,且AM、BM均与坐标轴不平行,则kAM•kBM=-
b2
a2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列推理中属于归纳推理且结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下四个推断:
①由an=2n-1,求出S1=12S2=22S3=32,…,推断:数列{an}的前n项和Sn=n2
②由f(x)=xcosx满足f(-x)=-f(x)对?x∈R都成立,推断:f(x)=xcosx为奇函数
③由圆x2+y2=r2的面积S=πr2,推断:椭圆
x2
a2
+
y2
b2
=1
的面积S=πab
④由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N*,(n+1)2>2n
其中推理中属于归纳推理且结论正确的是
 
(将符合条件的序号都填上).

查看答案和解析>>

同步练习册答案