精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的大小;
(Ⅲ)若F为线段BC的中点,求点D到平面PAF的距离.

解:(Ⅰ)证明:∵底面ABCD为正方形,
∴BC⊥AB,又BC⊥PB,
∴BC⊥平面PAB,
∴BC⊥PA.
同理CD⊥PA,
∴PA⊥平面ABCD.
(Ⅱ)解:设M为AD中点,连接EM,
又E为PD中点,
可得EM∥PA,从而EM⊥底面ABCD.
过M作AC的垂线MN,垂足为N,连接EN.
由三垂线定理有EN⊥AC,
∴∠ENM为二面角E-AC-D的平面角.
在Rt△EMN中,可求得EM=1,MN=
∴tanENM=
∴二面角E-AC-D的大小为arctan
(Ⅲ)解:过D做AF的垂线DG,垂足为G,
∵PA⊥平面ABCD,
∴平面PAF⊥平面ABCD,
∴DG⊥平面PAF,
∴DG为点D到平面PAF的距离,
由F为BC中点,可得AF=
又△ABF与△DGA相似,
可得
∴DG=
即点D到平面PAF的距离为
分析:(I)由题意及正方形的特点,利用BC⊥AB,BC⊥PB得到BC⊥平面PAB,进而得到BC⊥PA,在利用CD⊥PA,得到线面垂直;
(II)由题意及图形,利用三垂线定理得到二面角的平面角,并在三角形中解出即可;
(III)由PA⊥平面ABCD,得到平面PAF⊥平面ABCD,进而得到DG⊥平面PAF,然后利用△ABF与△DGA相似,求出点D到平面PAF的距离.
点评:此题重点考查了线线垂直,线面垂直的判定与性质;还考查了利用三垂线定理求解出二面角的平面角一常用方法;还考查了利用反三角函数的知识表示角的大小;在计算第三问的距离是还考查了利用三角形的相似解出线段长度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案